例如:"lncRNA", "apoptosis", "WRKY"

LASP1 interacts with N-WASP to activate the Arp2/3 complex and facilitate colorectal cancer metastasis by increasing tumour budding and worsening the pattern of invasion.

Oncogene. 2020 Aug;39(35):5743-5755. Epub 2020 Jul 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


LIM and SH3 protein 1 (LASP1) is a metastasis-related protein reported to enhance tumour progression in colorectal cancer (CRC). However, the underlying mechanism is still elusive. As the major biological and pathological functions of LASP1 are accomplished by its LIM and SH3 domains via protein-protein interactions, a yeast two-hybrid system was employed to screen novel LASP1-interacting proteins. N-WASP, a member of the Wiskott-Aldrich syndrome protein (WASP) family, was screened and identified as a LASP1-interacting protein overexpressed in CRC tissues. N-WASP could stimulate the migration and invasion of CRC cells in vitro and increase the formation of subcutaneous tumours, mesenteric implanted tumours and hepatic metastatic tumours. N-WASP could interact with and activate the Arp2/3 complex to stimulate actin polymerization, thus changing the migratory and invasive capabilities of CRC cells. The interaction of LASP1 with N-WASP did not influence the expression of N-WASP but recovered the reduced actin polymerization induced by N-WASP silencing. High N-WASP expression was detected in most clinical colorectal samples, and it was positively correlated with the expression of LASP1 and as well as the tumour budding and pattern of invasion, but negatively correlated with host lymphocytic response. Our study suggests a new mechanism for LASP1-mediated CRC metastasis determined by exploring LASP1-interacting proteins and identifies N-WASP as a potential therapeutic target for CRC.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读