例如:"lncRNA", "apoptosis", "WRKY"

Osteal Tissue Macrophages Are Involved in Endplate Osteosclerosis through the OSM-STAT3/YAP1 Signaling Axis in Modic Changes.

J Immunol. 2020 Aug 15;205(4):968-980. Epub 2020 Jul 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Modic changes (MCs) are radiographic manifestations of lumbar degenerative diseases. Various types of MCs are often associated with endplate osteosclerosis. Osteal tissue macrophages (Osteomacs) were reported to be crucial for bone homeostasis and bone repair, but whether osteomacs participate in the endplate osteosclerosis in MCs remained unclear. In this study, we tried to explore the critical role of osteomacs in regulating osteogenesis in MCs. We collected MCs from patient samples and developed a Propionibacterium acnes-induced rat MCs model, using microcomputed tomography and immunohistochemistry to detect the endplate bone mass and distribution of osteomacs. In patients' MCs, osteomacs increased in endplate subchondral bone, especially in Modic type II. Endplate in Modic type III presented a stable osteosclerosis. In rat MCs model, osteomacs increased in the bone hyperplasia area but not in the inflammation area of the endplate region, whereas the distribution of osteomacs was consistent with the area of osteosclerosis. To further explore the functions of osteomacs in vitro, we isolated osteomacs using MACS technology and found osteomacs secreted oncostatin M (OSM) and strongly promoted osteoblast differentiation rather than osteoclast through the mechanism of OSM-mediated tyrosine phosphorylation and interaction of and Yes-associated protein 1 (YAP1). duanyu18133 phosphorylation inhibition or YAP1 knockdown attenuated OSM-mediated osteoblast differentiation. Finally, we confirmed that blockade of OSM in vivo using anti-OSM-neutralizing Ab prevented endplate osteosclerosis in rat MCs model. Taken together, these findings confirmed that endplate osteosclerosis in MCs was accompanied by an increased number of osteomacs, which regulated osteogenesis via the signaling axis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读