例如:"lncRNA", "apoptosis", "WRKY"

Arabidopsis thaliana branching enzyme 1 is essential for amylopectin biosynthesis and cesium tolerance.

J Plant Physiol. 2020 Sep;252:153208. Epub 2020 Jun 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Arabidopsis thaliana BRANCHING ENZYME 1 (AtBE1) is a chloroplast-localized embryo-lethal gene previously identified in knockout mutants. AtBE1 is thought to function in carbohydrate metabolism; however, this has not been experimentally demonstrated. Chlorosis is a typical symptom of cesium (Cs) toxicity in plants. The genetic target of Cs toxicity is largely unknown. Here, we isolated a Cs+-tolerant and chlorophyll-defective Arabidopsis ethyl methanesulfonate (EMS) mutant, atbe1-5. Mapping by sequencing and genetic complementation confirmed that a single amino acid change (P749S) in a random coil motif of AtBE1 confers the mutant's Cs+-tolerant and chlorophyll-defective phenotype. An isothermal titration calorimetry assay determined that the 749th residue is the Cs+-binding site and hence likely the target of Cs+ toxicity. We hypothesized that binding of Cs+ to the 749th residue of AtBE1 inhibits the enzyme's activity and confers Cs+ toxicity, which in turn reduces photosynthetic efficiency. In support with this hypothesis, atbe1-5 leaves have a reduced photosynthetic efficiency, and their amylose and amylopectin contents are ∼60 % and ∼1%, respectively, of those in Col-0 ecotype leaves. Leaves of the mutant have a lower sucrose, but higher maltose, concentration than those of Col-0. This study demonstrated that AtBE1 is an essential gene for amylopectin and amylose biosynthesis, as well as the target of Cs+ toxicity; therefore, it can serve as a genetic locus for engineering plants to extract Cs+ from contaminated soil while maintaining growth.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读