[No authors listed]
Apoptosis is regulated by BCL-2 family proteins. Anti-apoptotic members suppress cell death by deploying a surface groove to capture the critical BH3 α-helix of pro-apoptotic members. Cancer cells hijack this mechanism by overexpressing anti-apoptotic BCL-2 family proteins to enforce cellular immortality. We previously identified and harnessed a unique cysteine (C55) in the groove of anti-apoptotic BFL-1 to selectively neutralize its oncogenic activity using a covalent stapled-peptide inhibitor. Here, we find that disulfide bonding between a native cysteine pair at the groove (C55) and C-terminal α9 helix (C175) of BFL-1 operates as a redox switch to control the accessibility of the anti-apoptotic pocket. Reducing the C55-C175 disulfide triggers α9 release, which promotes mitochondrial translocation, groove exposure for BH3 interaction and inhibition of mitochondrial permeabilization by pro-apoptotic BAX. C55-C175 disulfide formation in an oxidative cellular environment abrogates the ability of BFL-1 to bind BH3 domains. Thus, we identify a mechanism of conformational control of BFL-1 by an intramolecular redox switch.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |