例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA-219a-5p-mediated inhibition of CaMKIIγ facilitates vestibular compensation in acute vertigo by promoting protein kinase C expression.

Ann N Y Acad Sci. 2020 Sep;1475(1):78-88. doi:10.1111/nyas.14376. Epub 2020 Jul 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Vestibular compensation (VC) refers to a behavioral recovery process in which firing rates of bilateral vestibular nuclei neurons are rebalanced. Our study aimed to investigate the underlying mechanism by which miR-219a-5p regulates Ca2+ /calmodulin-dependent protein kinase II γ isoform (CaMKIIγ) and protein kinase C in VC. A unilateral vestibular deafferentation rat model was established by unilateral labyrinthectomy (UL), after which VC was evaluated in rats with UL-induced vertigo-like behavior by measuring vestibular defect behavior and performing rotarod tests, as well as by BrdU immunohistochemistry on medial vestibular nuclei. We found that miR-219a-5p was increased while CaMKIIγ was decreased during VC in the medial vestibular nucleus of rats that had undergone UL. Next, gain- and loss-of-function assays were conducted to evaluate the effects of miR-219a-5p and CaMKIIγ on the vestibular defect behaviors and VC, the results of which suggested that in rats after UL overexpression of CaMKIIγ inhibited VC, while overexpression of miR-219a-5p facilitated VC. A dual-luciferase reporter gene assay identified that miR-219a-5p targeted CaMKIIγ. This led to additional experiments showing that miR-219a-5p aptomir expression downregulated CaMKIIγ in cortical cells with a concomitant increase in expression, which were verified further in vivo. In summary, in rats with acute vertigo, miR-219a-5p overexpression inhibits CaMKIIγ and elevates thereby facilitating VC. Our study offers possible targets for further evaluation as treatment of acute vertigo in humans.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读