例如:"lncRNA", "apoptosis", "WRKY"

Long Noncoding RNASBF2-AS1 Promotes Gastric Cancer Progression via Regulating miR-545/EMS1 Axis.

Biomed Res Int. 2020 Jun 12;2020:6590303. doi:10.1155/2020/6590303. eCollection 2020
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Objective:Long noncoding RNA (LncRNA) SBF2-AS1 was reportedly to function as an oncogene in several types of cancers, such as hepatocellular carcinoma, nonsmall cell lung cancer, glioma, and colorectal cancer. However, the biological roles and regulatory mechanisms of SBF2-AS1 in gastric cancer (GC) are unknown. Methods:The expression of SBF2-AS1 and miR-545 were examined in GC tissues and cell lines via real-time quantitative PCR. The relationship of SBF2-AS1 with miR-545 was verified via dual-luciferase reporter gene assay and RNA immunoprecipitation. The influences of SBF2-AS1 on cell proliferation, migration, and invasion were determined using cell counting Kit-8 (CCK-8), wound healing, and transwell invasion assays, respectively. Results:LncRNA SBF2-AS1 expression was upregulated in GC tissues, especially in advanced clinical stage cases. Moreover, increased SBF2-AS1 indicated a poor survival rate. Functionally, the downregulation of SBF2-AS1 by siRNA in GC cells suppressed the proliferation, migration, and invasion. In terms of mechanism, SBF2-AS1 can directly bind to miR-545 and regulate its expression. Moreover, SBF2-AS1 knockdown significantly decreased the expression of EMS1, which was the direct target of miR-545. Importantly, inhibition of miR-545 or overexpression of EMS1 partially reversed SBF2-AS1-depletion-caused suppression on proliferation, migration, and invasion. Conclusion:These findings elucidated a crucial role of SBF2-AS1 as a miR-545 sponge in GC cells, suggesting that SBF2-AS1 might be a potential target for GC.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读