例如:"lncRNA", "apoptosis", "WRKY"

MSH1 is required for maintenance of the low mutation rates in plant mitochondrial and plastid genomes.

Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16448-16455. Epub 2020 Jun 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Mitochondrial and plastid genomes in land plants exhibit some of the slowest rates of sequence evolution observed in any eukaryotic genome, suggesting an exceptional ability to prevent or correct mutations. However, the mechanisms responsible for this extreme fidelity remain unclear. We tested seven candidate genes involved in cytoplasmic DNA replication, recombination, and repair (POLIA, POLIB, MSH1, RECA3, UNG, FPG, and OGG1) for effects on mutation rates in the model angiosperm Arabidopsis thaliana by applying a highly accurate DNA sequencing technique (duplex sequencing) that can detect newly arisen mitochondrial and plastid mutations even at low heteroplasmic frequencies. We find that disrupting MSH1 (but not the other candidate genes) leads to massive increases in the frequency of point mutations and small indels and changes to the mutation spectrum in mitochondrial and plastid DNA. We also used droplet digital PCR to show transmission of de novo heteroplasmies across generations in msh1 mutants, confirming a contribution to heritable mutation rates. This dual-targeted gene is part of an enigmatic lineage within the mutS mismatch repair family that we find is also present outside of green plants in multiple eukaryotic groups (stramenopiles, alveolates, haptophytes, and cryptomonads), as well as certain bacteria and viruses. MSH1 has previously been shown to limit ectopic recombination in plant cytoplasmic genomes. Our results point to a broader role in recognition and correction of errors in plant mitochondrial and plastid DNA sequence, leading to greatly suppressed mutation rates perhaps via initiation of double-stranded breaks and repair pathways based on faithful homologous recombination.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读