例如:"lncRNA", "apoptosis", "WRKY"

SRSF10 inhibits biogenesis of circ-ATXN1 to regulate glioma angiogenesis via miR-526b-3p/MMP2 pathway.

J Exp Clin Cancer Res. 2020 Jun 29;39(1):121
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Angiogenesis plays an important role in the progress of glioma. RNA-binding proteins (RBPs) and circular RNAs (circRNAs), dysregulated in various tumors, have been verified to mediate diverse biological behaviors including angiogenesis. METHODS:Quantitative real-time PCR (qRT-PCR) and western blot were performed to detect the expression of SRSF10, circ-ATXN1, miR-526b-3p, and MMP2/VEGFA. The potential function of SRSF10/circ-ATXN1/miR-526b-3p axis in glioma-associated endothelial cells (GECs) angiogenesis was further studied. RESULTS:SRSF10 and circ-ATXN1 were significantly upregulated in GECs compared with astrocyte-associated endothelial cells (AECs). Knockdown of SRSF10 or circ-ATXN1 significantly inhibited cell viability, migration and tube formation of GECs where knockdown of SRSF10 exerted its function by inhibiting the formation of circ-ATXN1. Moreover, the combined knockdown of SRSF10 and circ-ATXN1 significantly enhanced the inhibitory effects on cell viability, migration and tube formation of GECs, compared with knockdown of SRSF10 and circ-ATXN1, respectively. MiR-526b-3p was downregulated in GECs. Circ-ATXN1 functionally targeted miR-526b-3p in an RNA-induced silencing complex. Up-regulation of miR-526b-3p inhibited cell viability, migration and tube formation of GECs. Furthermore, miR-526b-3p affected the angiogenesis of GECs via negatively regulating the expression of MMP2/VEGFA. CONCLUSION:SRSF10/circ-ATXN1/miR-526b-3p axis played a crucial role in regulating the angiogenesis of GECs. The above findings provided new targets for anti-angiogenic therapy in glioma.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读