例如:"lncRNA", "apoptosis", "WRKY"

Multilevel regulation of muscle-specific transcription factor hlh-1 during Caenorhabditis elegans embryogenesis.

Dev Genes Evol. 2020 Jul;230(4):265-278. Epub 2020 Jun 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


hlh-1 is a myogenic transcription factor required for body-wall muscle specification during embryogenesis in Caenorhabditis elegans. Despite its well-known role in muscle specification, comprehensive regulatory control upstream of hlh-1 remains poorly defined. Here, we first established a statistical reference for the spatiotemporal expression of hlh-1 at single-cell resolution up to the second last round of divisions for most of the cell lineages (from 4- to 350-cell stage) using 13 wild-type embryos. We next generated lineal expression of hlh-1 after RNA interference perturbation of 65 genes, which were selected based on their degree of conservation, mutant phenotypes, and known roles in development. We then compared the expression profiles between wild-type and embryos by clustering according to their lineal expression patterns using mean-shift and density-based clustering algorithms, which not only confirmed the roles of existing genes but also uncovered the potential functions of novel genes in muscle specification at multiple levels, including cellular, lineal, and embryonic levels. By combining the public data on protein-protein interactions, protein-DNA interactions, and genetic interactions with our duanyu1615 data, we inferred regulatory pathways upstream of hlh-1 that function globally or locally. This work not only revealed diverse and multilevel regulatory mechanisms coordinating muscle differentiation during C. elegans embryogenesis but also laid a foundation for further characterizing the regulatory pathways controlling muscle specification at the cellular, lineal (local), or embryonic (global) level.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读