例如:"lncRNA", "apoptosis", "WRKY"

Over-expression of microRNA-145 drives alterations in β-adrenergic signaling and attenuates cardiac remodeling in heart failure post myocardial infarction.

Aging (Albany NY). 2020 Jun 18;12(12):11603-11622. Epub 2020 Jun 18
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Numerous studies have highlighted the crucial role of microRNA-145 (miR-145) in coronary atherosclerosis and myocardial ischemia reperfusion injury. However, effects of miR-145 on β-adrenergic signaling and cardiac remodeling in heart failure (HF) remains unclarified. METHODS AND RESULTS:We established HF model in rats with left anterior descending coronary artery (LAD) occlusion. Four weeks after LAD ligation, rats showed substantial aggravation of cardiac dilation and electrophysiological instability. Up-regulation of miR-145 ameliorated HF-induced myocardial fibrosis and prolonged action potential duration. Echocardiography revealed increased basal contractility and decreased left ventricular inner-diameter in miR-145 over-expressed heart, while cardiac response to β-adrenergic receptor (βAR) stimulation was reduced. Furthermore, miR-145 increased L-type calcium current (ICa) density while decreased ICa response to β-adrenergic stimulation with isoproterenol. The alterations in βAR signaling might be predominant due to miR-145-mediated activation of Akt/CREB cascades. At high frequency pacing, Ca2+ transient, cell shortening and frequency of Ca2+ waves were significantly improved in AD-miR-145 group. Western blotting revealed that increased expression of Cav1.2, Ca2+-ATPase, β2AR, GNAI3 and decreased level of CaMKII might be attributed to the cardioprotective effects of miR-145. CONCLUSION:miR-145 effectively alleviates HF-related cardiac remodeling by improving cardiac dilation, fibrosis, intracellular Ca2+ mishandling and electrophysiological instability.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读