例如:"lncRNA", "apoptosis", "WRKY"

Effects of intron conversion in the human CYP11B2 gene on its transcription and blood pressure regulation in transgenic mice.

J Biol Chem. 2020 Aug 07;295(32):11068-11081. Epub 2020 Jun 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The human cytochrome P450 family 11 subfamily B member 2 (hCYP11B2) gene encodes aldosterone synthase, the rate-limiting enzyme in the biosynthesis of aldosterone. In some humans, hCYP11B2 undergoes a unique intron conversion whose function is largely unclear. The intron conversion is formed by a replacement of the segment of DNA within intron 2 of hCYP11B2 with the corresponding region of the hCYP11B1 gene. We show here that the intron conversion is located in an open chromatin form and binds more strongly to the transcriptional regulators histone acetyltransferase P300 (p300), NFκB, and CCAAT enhancer-binding protein α (CEBPα). Reporter constructs containing the intron conversion had increased promoter activity on transient transfection in H295R cells compared with WT intron 2. We generated humanized transgenic (TG) mice containing all the introns, exons, and 5'- and 3'-flanking regions of the hCYP11B2 gene containing either the intron conversion or WT intron 2. We found that TG mice containing the intron conversion have (a) increased plasma aldosterone levels, (b) increased hCYP11B2 mRNA and protein levels, and (c) increased blood pressure compared with TG mice containing WT intron 2. Results of a ChIP assay showed that chromatin obtained from the adrenals of TG mice containing the intron conversion binds more strongly to p300, NFκB, and CEBPα than to WT intron 2. These results uncover a functional role of intron conversion in hCYP11B2 and suggest a new paradigm in blood pressure regulation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读