例如:"lncRNA", "apoptosis", "WRKY"

Tudor domain of histone demethylase KDM4B is a reader of H4K20me3.

Acta Biochim Biophys Sin (Shanghai). 2020 Aug 05;52(8):901-906
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The lysine histone demethylase KDM4B is overexpressed in several types of cancers and plays dual roles in genome stability maintenance. Although KDM4B is able to recognize several histone methylations, the underlying molecular mechanism is still unknown. In this study, we purified the KDM4B chromatin-associated hybrid tudor domains (HTDs) and plant home domains (PHDs) and performed the pull-down assay to screen the tri-methyl modified histone peptides that could be efficiently recognized by KDM4B. Our results showed that both HTD alone and the combination of HTD and PHD were able to specifically bind to H3K4me3 and H4K20me3. Because H4K20me3 is essential for KDM4B's rapid recruitment to DNA damage site, we further aligned the multiple tudor peptide sequence and identified two conserved residues Y993 and W987 that are critical for KDM4B-H4K20me3 interaction. The surface plasmon resonance analysis revealed that HTD displayed a rapid H4K20me3 bind-dissociate pattern. These findings therefore provided mechanistic insights into the binding of tudor domain of KDM4B protein with H4K20me3.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读