例如:"lncRNA", "apoptosis", "WRKY"

Genetic Variation in Cytochrome P450 2R1 and Vitamin D Binding Protein Genes are associated with Vitamin D Deficiency in Adolescents.

Int J Vitam Nutr Res. 2020 Jun;90(3-4):339-345. doi:10.1024/0300-9831/a000632. Epub 2019 Nov 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Background: Genome Wide Association Studies (GWAS) have evaluated several genes related to vitamin D synthesis, metabolism and transport. They have proposed a genetic basis for low levels of vitamin D in the blood. The current study aims to investigate the relationship between certain vitamin D-associated gene variants and vitamin D deficiency in Iranian adolescents. Methods: In this case-control study, the genomic DNA was extracted by Real Time PCR High Resolution Melt (HRM). All measurements were carried out with triple repetition. The following factors were assessed: single nucleotide polymorphisms (SNPs) in Vitamin D binding protein (DBP, rs2282679), 7-Dehydrocholesterol reductase (DHCR7, rs12785878) and 2R1 (CYP2R1, rs10741657). Results: the genomic DNA of blood samples obtained from 481 adolescents. Participants with hypovitaminosis D were compared with a control group. The average vitamin D level of sufficient subjects (controls) was 44.88±14.01 ng/mL, while subjects who were insufficient (cases) had an average vitamin D level of 7.03±1.24 ng/mL. No statistically significant differences were found in the allelic and genotypic distributions between genders. The SNP frequency in CYP2R1 (rs10741657) and DBP (rs2282679) in the vitamin D deficient group was significantly higher than in the control group (p-values < 0.001 and 0.01 respectively). There were no statistically significant differences in the DHCR7 SNP (rs12785878) distributions between the Vitamin D deficient group and control group. Conclusion: The present study demonstrated evidence of the ability of the SNPs under investigation to predict circulating vitamin D concentration. Further study is needed to better understand if and how genetic factors contribute to vitamin D levels, and certain skeletal-associated disorders in adolescents.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读