例如:"lncRNA", "apoptosis", "WRKY"

Knockdown of Ubiquitin-Specific Protease 53 Enhances the Radiosensitivity of Human Cervical Squamous Cell Carcinoma by Regulating DNA Damage-Binding Protein 2.

Technol Cancer Res Treat. 2020 Jan-Dec ;19:1533033820929792. doi:10.1177/1533033820929792
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Cervical cancer ranks fourth in incidence and mortality among women. Ubiquitin-specific protein 53 binds to damage-specific DNA binding protein 2 and affects the biological properties of colon cancer. Damage-specific DNA binding protein is involved in nucleotide excision repair, which can repair DNA damage. However, the mechanism by which ubiquitin-specific protein 53 regulates the radiosensitivity of cervical cancer through damage-specific DNA binding protein remains unclear. METHODS:Tissue samples from 40 patients with cervical squamous cell carcinoma who received radiotherapy were examined by immunohistochemistry to detect the expression of ubiquitin-specific protein 53, and clinical data were collected for statistical analysis. The cell cycle was detected by flow cytometry in Siha cells transfected with Si-USP53 and exposed to 8 Gy irradiation. Cell viability was determined by the CCK8 method in cells transfected with Si-USP53 and exposed to 0, 2, 4, 6, 8, or 10 Gy. The expression of damage-specific DNA binding protein, cyclin-dependent kinase 1, and cell cycle checkpoint kinase 2 was detected in cells transfected with Si-USP53. RESULTS:The expression of ubiquitin-specific protein 53 in the tissues of patients with cervical squamous cell carcinoma was correlated with the sensitivity to radiotherapy. Knockdown of ubiquitin-specific protein 53 in Siha cells downregulated damage-specific DNA binding protein and caused G2/M cell cycle arrest and decreased the survival rate of cells in response to radiation. CONCLUSION:Ubiquitin-specific protein 53-induced cell cycle arrest and affected the radiotherapy sensitivity of tumors through damage-specific DNA binding protein.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读