[No authors listed]
Mitochondrial oxidative stress is a significant contributor to the pathogenesis of diabetic kidney disease (DKD). We previously showed that mitochondrial oxidative stress in the kidneys of Zucker diabetic fatty rats is associated with a decreased intracellular NAD+/NADH ratio and NAD+-dependent deacetylase Sirt3 activity, and increased expression of the NAD+-degrading enzyme CD38. In this study, we used a CD38 inhibitor, apigenin, to investigate the role of CD38 in DKD. Apigenin significantly reduced renal injuries, including tubulointerstitial fibrosis, tubular cell damage, and pro-inflammatory gene expression in diabetic rats. In addition, apigenin down-regulated CD38 expression, and increased the intracellular NAD+/NADH ratio and Sirt3-mediated mitochondrial antioxidative enzyme activity in the kidneys of diabetic rats. In vitro, inhibition of CD38 activity by apigenin or CD38 knockdown increased the NAD+/NADH ratio and Sirt3 activity in renal proximal tubular HK-2 cells cultured under high-glucose conditions. Together, these results demonstrate that by inhibiting the Sirt3 activity and increasing mitochondrial oxidative stress in renal tubular cells, CD38 plays a crucial role in the pathogenesis of DKD.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |