例如:"lncRNA", "apoptosis", "WRKY"

Long noncoding RNA NEAT1 sponges miR-129 to modulate renal fibrosis by regulation of collagen type I.

Am J Physiol Renal Physiol. 2020 Jul 01;319(1):F93-F105. doi:10.1152/ajprenal.00552.2019. Epub 2020 Jun 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The long noncoding RNA nuclear enriched abundant transcript 1 (NEAT1) has been reported to promote liver fibrosis progression. However, its molecular mechanism in renal fibrosis was not elucidated. In the present study, an in vitro model of renal fibrosis was established with HK-2 and HKC-8 cells treated with transforming growth factor-β1. C57BL/6 mice were used for the in vivo model with unilateral ureteral obstruction. Our results indicated that NEAT1 and collagen type I levels were significantly upregulated, whereas miR-129 was obviously downregulated, in the progression of renal fibrosis. Meanwhile, NEAT1 knockdown or miR-129 overexpression inhibited collagen type I deposition, the epithelial-mesenchymal transition process, and the inflammation response to suppress renal fibrosis. NEAT1 directly targeted miR-129, and miR-129 directly bound to collagen type I. Downregulation of miR-129 reversed inhibition of renal fibrosis induced by NEAT1 silencing, and upregulation of collagen type I also reversed inhibition of renal fibrosis caused by miR-129 overexpression. NEAT1 knockdown alleviated renal fibrosis in mice subjected to unilateral ureteral obstruction. In conclusion, NEAT1 sponged miR-129 to modulate the epithelial-mesenchymal transition process and inflammation response of renal fibrosis by regulation of collagen type I. Our study indicates a novel role in the regulation of renal fibrosis and provides a new potential treatment target for renal fibrosis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读