例如:"lncRNA", "apoptosis", "WRKY"

IgGs from Human Milk Hydrolyze microRNAs.

Molecules. 2020 May 20;25(10)
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Mother's milk provides breast-fed infants with various nutrients, including peptides, proteins, DNA, RNA, antibodies, and other bioactive components promoting neonatal growth and protecting infants from viral and bacterial infection. The functions of many human milk components regarding the nutrition and protection of newborns may be very different compared to those of various biological fluids of healthy adults. For example, human milk contains catalytic antibodies (abzymes) with protein, lipid, and oligosaccharide kinase activities, which are absent in the biological fluids of healthy people and autoimmune patients. Obviously, the nutrition of infants with fresh breast milk is a special phenomenon having a very specific and important role. Here, we have shown that mother's milk IgGs effectively split homo-(pN)23, and four miRNAs: miR-137, miR-219a-5p, miR-219-2-3p, and miR-9-5p. It was shown that ribonuclease activity is a unique property of milk IgGs. On average, individual IgGs hydrolyze (pA)23, (pU)23, and (pC)23 nonspecifically and with comparable efficiency, whereas the hydrolysis of four miRNAs is predominately site-specific. The specific sites of the hydrolysis of four miRNAs by IgGs from the blood of schizophrenic (SCZ) patients and secretory immunoglobulins A (sIgAs) from human milk were found earlier. The sites of the hydrolysis of four miRNAs by milk IgGs and sIgA-abzymes are almost the same, but are significantly different in comparison with those for SCZ IgGs. In addition, in contrast to the SCZ IgGs, milk IgGs and sIgAs efficiently hydrolyzed miRNAs in the duplex regions formed by their terminal sequences.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读