例如:"lncRNA", "apoptosis", "WRKY"

PD-1 and BTLA regulate T cell signaling differentially and only partially through SHP1 and SHP2.

J Cell Biol. 2020 Jun 01;219(6)
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Blockade antibodies of the immunoinhibitory receptor PD-1 can stimulate the anti-tumor activity of T cells, but clinical benefit is limited to a fraction of patients. Evidence suggests that BTLA, a receptor structurally related to PD-1, may contribute to resistance to PD-1 targeted therapy, but how BTLA and PD-1 differ in their mechanisms is debated. Here, we compared the abilities of BTLA and PD-1 to recruit effector molecules and to regulate T cell signaling. While PD-1 selectively recruited SHP2 over the stronger phosphatase SHP1, BTLA preferentially recruited SHP1 to more efficiently suppress T cell signaling. Contrary to the dominant view that PD-1 and BTLA signal exclusively through SHP1/2, we found that in SHP1/2 double-deficient primary T cells, PD-1 and BTLA still potently inhibited cell proliferation and cytokine production, albeit more transiently than in wild type T cells. Thus, PD-1 and BTLA can suppress T cell signaling through a mechanism independent of both SHP1 and SHP2.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读