[No authors listed]
Diabetic neuropathic pain is one of the most common complications of diabetes. Mechanisms underlying the central modulation are still unclear. Here, we investigated the role of the neuron-restricted silencing factor (NRSF/REST) in diabetic-related neuropathic pain. Mechanical allodynia and thermal hyperalgesia were assessed to evaluate painful behaviors. Our results found that in the anterior cingulate cortex (ACC) of db/db mice, NRSF/REST levels increased significantly. Reduction of NRSF/REST improved the painful sensation. Meanwhile, in vitro study found that high glucose and high palmitic acid treatment induced elevation of NRSF/REST and its cofactors (mSin3A, CoREST and HDAC1), whereas downregulation of GluR2 and NMDAR2B. Knockdown of NRSF/REST could attenuate the LDH release and partially reversed the expression changes of HDAC1 and NMDAR2B. Our results suggested that the elevation of NRSF/REST in the ACC area of db/db mice is one of the key mediators of diabetic neuropathic pain.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |