例如:"lncRNA", "apoptosis", "WRKY"

Chronic Sympathetic Hyperactivity Triggers Electrophysiological Remodeling and Disrupts Excitation-Contraction Coupling in Heart.

Sci Rep. 2020 May 14;10(1):8001
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The sympathetic nervous system is essential for maintenance of cardiac function via activation of post-junctional adrenergic receptors. Prolonged adrenergic receptor activation, however, has deleterious long-term effects leading to hypertrophy and the development of heart failure. Here we investigate the effect of chronic adrenergic receptors activation on excitation-contraction coupling (ECC) in ventricular cardiomyocytes from a previously characterized mouse model of chronic sympathetic hyperactivity, which are genetically deficient in the adrenoceptor α2A and α2C genes (ARDKO). When compared to wild-type (WT) cardiomyocytes, ARDKO displayed reduced fractional shortening (~33%) and slower relaxation (~20%). Furthermore, ARDKO cells exhibited several electrophysiological changes such as action potential (AP) prolongation (~50%), reduced L-type calcium channel (LCC) current (~33%), reduced outward potassium (K+) currents (~30%), and increased sodium/calcium exchanger (NCX) activity (~52%). Consistent with reduced contractility and calcium (Ca2+) currents, the cytosolic Ca2+ ([Ca2+]i) transient from ARDKO animals was smaller and decayed slower. Importantly, no changes were observed in membrane resting potential, AP amplitude, or the inward K+ current. Finally, we modified our existing cardiac ECC computational model to account for changes in the ARDKO heart. Simulations suggest that cellular changes in the ARDKO heart resulted in variable and dyssynchronous Ca2+-induced Ca2+ release therefore altering [Ca2+]i transient dynamics and reducing force generation. In conclusion, chronic sympathetic hyperactivity impairs ECC by changing the density of several ionic currents (and thus AP repolarization) causing altered Ca2+ dynamics and contractile activity. This demonstrates the important role of ECC remodeling in the cardiac dysfunction secondary to chronic sympathetic activity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读