[No authors listed]
BACKGROUND:Calpain 1 (CAPN1) has been found to be a promoter of cancer progression. PTPN1 as a physiological target molecule of CAPN1 plays a dephosphorylated role on multiple receptor tyrosine kinases. This study aimed to reveal the effects of CAPN1/PTPN1 on malignant phenotype and EGFR-TKI resistance of lung adenocarcinoma (LUAD) cells. METHODS:A total of 84 primary LUAD tissues and paired paracancerous normal tissues were collected. Quantitative real-time PCR (qRT-PCR) and immunohistochemical (IHC) methods were used to measure the expression of CAPN1 and PTPN1 in tissues. qRT-PCR and western blot were used to detect the expressions of CAPN1, PTPN1, c-Met and PIK3R2 in cell lines. Cell counting kit-8 (CCK-8), colony formation and transwell assay were carried out to evaluate cell erlotinib resistance, proliferation, migration and invasion. Co-IP assay was used to verify the interaction between proteins. Cycloheximide (CHX) was applied to block protein synthesis. RESULTS:CAPN1, c-Met and PIK3R2 were significantly upregulated and the correlation was positive in LUAD, while PTPN1 was decreased. EGFR-sensitive mutation was related to CAPN1/PTPN1. in vitro studies showed that PTPN1 can mediate dephosphorylation of c-Met and PIK3R2 by binding with both, thereby weakening cell proliferation, metastasis and erlotinib resistance, while CAPN1 could enhance the degradation of PTPN1 protein as a cancer promoter. CONCLUSIONS:CAPN1 enhances the malignant behavior and erlotinib resistance of LUAD cells via degrading PTPN1 and then activating c-Met/PIK3R2, which suggests CAPN1/PTPN1 may serve as tumor markers or potential targets for diagnosis and treatment of LUAD. KEY POINTS:Significant findings of the study Superior CAPN1 and inferior PTPN1 were related to activation of c-Met/PIK3R2 in lung adenocarcinoma. Moreover, regulations of CAPN1 and PTPN1 induced the changes of malignant behavior and erlotinib resistance. What this study adds Our findings confirmed that CAPN1/PTPN1 play crucial roles on proliferation, metastasis and erlotinib resistance of LUAD cells as c-Met/PIK3R2 regulators, and validated the regulatory mechanism of CAPN1 on PTPN1 in tumor model for the first time.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |