例如:"lncRNA", "apoptosis", "WRKY"

Novel hybrid genes and a splice site mutation encoding the Sta antigen among Japanese blood donors.

Vox Sang. 2020 Nov;115(8):756-766. doi:10.1111/vox.12921. Epub 2020 May 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:The low-incidence antigen Sta of the MNS system is usually associated with the GP(B-A) hybrid molecule, which carries the 'N' antigen at the N terminus. The GP(A-A) molecule with trypsin-resistant M antigen has been found in a few St(a+) individuals. MATERIALS AND METHODS:Among Japanese blood donors, we screened 24 292 individuals for the presence of St(a+) with trypsin-resistant 'N' antigen and 193 009 individuals for the presence of St(a+) with trypsin-resistant M antigen. The breakpoints responsible for the Sta antigen were analysed by sequencing the genomic DNAs. RESULTS:A total of 1001 (4·1%) individuals were identified as St(a+) with trypsin-resistant 'N' antigen. Out of 1001 individuals, 115 were selected randomly for sequencing. Two novel GYP*Sch (GYP*401) variants with new intron 3 breakpoints of GYPA were detected in three cases. Twenty-five (0·013%) individuals were identified as St(a+) with trypsin-resistant M antigen. Five individuals had the GYP(A-ψB-A) hybrid allele; two of these five individuals were GYP*Zan (GYP*101.01), and the remaining three had a novel GYP(A-ψB-A) allele with the first breakpoint in GYPA exon A3 between c.178 and c.203. Nine individuals had a novel GYP(A-E-A) allele with GYPE exon E2 and pseudoexon E3 instead of GYPA exon A2 and A3. The 11 remaining individuals had a novel GYP(A-A) allele with a 9-bp deletion that included the donor splice site of intron 3 of GYPA. CONCLUSION:Our finding on diversity of glycophorin genes responsible for Sta antigen provides evidence for further complexity in the MNS system. © 2020 International Society of Blood Transfusion.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读