例如:"lncRNA", "apoptosis", "WRKY"

Jumonji domain containing-3 (JMJD3) inhibition attenuates IL-1β-induced chondrocytes damage in vitro and protects osteoarthritis cartilage in vivo.

Inflamm Res. 2020 Jul;69(7):657-666. Epub 2020 May 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVES:This study aimed to explore the effects and relative mechanism of JMJD3 on knee osteoarthritis (OA). METHODS:In this study, we first analyzed the expression of JMJD3 in OA cartilage using western blot and immunohistochemistry. In an in vitro study, the effects of GSK-J4, JMJD3 inhibitor, on ATDC-5 chondrocytes were evaluated by CCK-8 assay. and western blot were used to examine the inhibitory effect of GSK-J4 on the inflammation and ECM degradation of chondrocytes. NF-κB p65 phosphorylation and nuclear translocation were measured by western blot and immunofluorescence. In the animal study, twenty mice were randomized into four experimental groups: sham group, DMM-induced OA + DMSO group, OA + low-dose GSK-J4 group, and OA + high-dose GSK-J4 group. After the treatment, hematoxylin-eosin and safranin O/fast green staining were used to evaluate cartilage degradation of knee joint, with OARSI scores for quantitative assessment of cartilage damage. RESULTS:Our results revealed that JMJD3 was overexpressed in OA cartilage and GSK-J4 could suppress the IL-1β-induced production of pro-inflammatory cytokines and catabolic enzymes, including IL-6, IL-8, MMP-9 and ADAMTS-5. Consistent with these findings, GSK-J4 could inhibit IL-1β-induced degradation of collagen II and aggrecan. Mechanistically, GSK-J4 dramatically suppressed IL-1β-stimulated NF-κB signal pathway activation. In vivo, GSK-J4 prevented cartilage damage in mouse DMM-induced OA model. CONCLUSIONS:This study elucidates the important role of JMJD3 in cartilage degeneration in OA, and our results indicate that JDJM3 may become a novel therapeutic target in OA therapy.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读