例如:"lncRNA", "apoptosis", "WRKY"

Calcium-Mediated Interactions Regulate the Subcellular Localization of Extracellular Signal-Regulated Kinases (ERKs).

Cell Physiol Biochem. 2020 May 12;54(3):474-492. doi:10.33594/000000231
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND/AIMS:The subcellular localization of ERK1 and ERK2 (ERKs) in cells, which is important for proper signaling, may be regulated through protein-protein interactions. However, the proteins involved and the way they are regulated to affect localization is not entirely understood. METHODS:In order to identify the interacting proteins upon varying conditions, we used co-immunoprecipitation of ERK, active ERK and its binding CRS mutant. In addition, we examined the effect of intracellular calcium on the binding using calcium chelators and ionophores, analyzing the binding using silver stain, mass spectrometry and immunoblotting. The effect of calcium on ERK localization was examined using immunofluorescent staining and Western blotting. RESULTS:We found that inactive ERK2 interacts with a large number of proteins through its CRS/CD domain, whereas the phospho-ERK2 interacts with only few substrates. Varying calcium concentrations significantly modified the repertoire of ERK2-interacting proteins, of which many were identified. The effect of calcium on ERKs' interactions influenced also the localization of ERKs, as calcium chelators enhanced nuclear translocation, while elevated calcium levels prevented it. This effect of calcium was also apparent upon the physiological lysophosphatidic acid stimulation, where ERKs translocation was delayed compared to that induced by EGF in a calcium-dependent manner. In vitro translocation assay revealed that high calcium concentrations affect ERKs' translocation by preventing the shuttling machinery through the nuclear envelope, probably due to higher binding to nuclear pore proteins such as NUP153. These results are consistent with a model in which ERKs in quiescent cells are bound to several cytoplasmic proteins. CONCLUSION:Upon stimulation, ERKs are phosphorylated and released from their cytoplasmic anchors to allow shuttling into the nucleus. This translocation is delayed when calcium levels are increased, and this modifies the localization of ERKs and therefore also their spatiotemporal regulation. Thus, calcium regulates ERKs localization, which is important for the compartmentalization of ERKs with their proper substrates, and thereby their signaling specificity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读