[No authors listed]
During early obesity, pancreatic β cells compensate for increased metabolic demand through a transient phase of insulin hypersecretion that stabilizes blood glucose and forestalls diabetic progression. We find evidence that β cell O-GlcNAcylation, a nutrient-responsive post-translational protein modification regulated by O-GlcNAc transferase (OGT), is critical for coupling hyperlipidemia to β cell functional adaptation during this compensatory prediabetic phase. In mice, islet O-GlcNAcylation rises and falls in tandem with the timeline of secretory potentiation during high-fat feeding while genetic models of β-cell-specific OGT loss abolish hyperinsulinemic responses to lipids, in vivo and in vitro. We identify the endoplasmic reticulum (ER) Ca2+ ATPase SERCA2 as a β cell O-GlcNAcylated protein in mice and humans that is able to rescue palmitate-stimulated insulin secretion through pharmacological activation. This study reveals an important physiological role for β cell O-GlcNAcylation in sensing and responding to obesity, with therapeutic implications for managing the relationship between type 2 diabetes and its most common risk factor.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |