例如:"lncRNA", "apoptosis", "WRKY"

Physico-chemical properties of two point mutants of small heat shock protein HspB6 (Hsp20) with abrogated cardioprotection.

Biochimie. 2020 Jul;174:126-135. Epub 2020 Apr 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Physico-chemical properties of HspB6 S10F and P20L mutants with abrogated cardioprotective activity and associated with different forms of cardiomyopathy were analyzed. Under normal conditions both the wild-type HspB6 and its mutants formed small size oligomers (dimers) with apparent molecular weight of 50-60 kDa. Under crowding conditions (0.5 M trimethylamine N-oxide, TMAO) the wild-type HspB6 remained predominantly dimeric or formed small molecular weight complexes, whereas both mutants tended to form high molecular weight complexes. Catalytic subunit of cAMP-dependent protein kinase phosphorylated the wild-type HspB6 and its S10F mutant with comparable rate. The rate of P20L mutant phosphorylation was higher than that of the wild-type HspB6. S10F and P20L mutations did not affect interaction of phosphorylated HspB6 with universal adapter proteins 14-3-3. The wild-type HspB6 was resistant to heat-induced denaturation and aggregation, whereas both its mutants were denatured and started to aggregate at temperature much lower than its wild-type counterpart. Titration with fluorescent probe bis-ANS was accompanied by larger increase of fluorescence in the case of both mutants than in the case of the wild-type HspB6. Both mutants possessed higher chaperone-like activity than the wild-type protein. It is concluded that both S10F and P20L mutations are accompanied by increase of hydrophobicity of the very N-terminal region of HspB6 leading to increased aggregation at elevated temperature, formation of large complexes under crowding conditions and increased chaperone-like activity measured in vitro. Increased hydrophobicity and self-association can affect substrate specificity and interaction with certain target proteins thus leading to decrease or complete abrogation of cardioprotective activity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读