[No authors listed]
Repair genes may play critical roles in the relationships between environmental exposure and health outcomes. However, no evidence is available about the effect of repair gene polymorphisms on the relationship between bisphenol A (BPA) exposure and liver abnormality. Therefore, we evaluated the effect of nine genotyped polymorphisms in three repair genes, poly(ADP-ribose) polymerase family member 4 X-ray repair cross complementing 3 (XRCC3), and RAD51 recombinase (RAD51), on the relationship between BPA exposure and liver abnormality using repeated measures data for an elderly population. A significant association between BPA levels and liver abnormality was found only in elders with the G-C-G haplotype, XRCC3 G-A-G haplotype, or RAD51 T-A-A haplotype (odds ratio (OR) = 2.16 and p = 0.0014 for OR = 1.57 and p = 0.0249 for XRCC3; OR = 1.43 and p = 0.0422 for RAD51). Particularly, Pduanyu374 and XRCC3 showed significant interactions with BPA exposure in relation to liver abnormality (p < 0.05 for both genes). These results indicate that XRCC3, and RAD51 gene polymorphisms have modification effects on the relationship between BPA exposure and liver abnormality.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |