例如:"lncRNA", "apoptosis", "WRKY"

Regulation of epithelial-mesenchymal transition via sonic hedgehog/glioma-associated oncogene homolog 1 signaling pathway in peritoneal mesothelial cells.

Cell Biol Int. 2020 Aug;44(8):1691-1700. doi:10.1002/cbin.11363. Epub 2020 May 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Sonic hedgehog (Shh) signaling regulating epithelial-mesenchymal transition (EMT) in cultured rat peritoneal mesothelial cells (PMCs) remains an under-investigated topic. The current study aimed to elucidate the role of Shh signaling in the regulation of EMT in PMCs to attenuate peritoneal injury, with the view of enhancing the efficacy of peritoneal dialysis (PD). PMCs were initially extracted from male Wistar rats using pancreatic enzyme digestion. The expression of Shh and glioma-associated oncogene homolog (Gli1) was quantitatively analyzed using the reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Migration of PMCs was determined using Transwell assay. The expression of Shh, Gli1, and EMT markers including α-smooth muscle actin (α-SMA), fibronectin, collagen I, snail1, and E-cadherin was examined by RT-qPCR, western blot analysis, and immunofluorescence respectively. High glucose induction was identified to promote cell migration and increase the expression of Shh and Gli1 in a dose- and time-dependent manner in rat PMCs. Cyclopamine (CPN) was observed to block the Shh signaling induced by high glucose, accompanied by cell migration inhibition, decreased expression of α-SMA, fibronectin, collagen I and snail1 as well as increased expression of E-cadherin. Altogether, overexpression of Gli1 by transfected Gli1 plasmid promotes cell migration and upregulates α-SMA, fibronectin, Snail1, and collagen I expression, while downregulating E-cadherin expression. Shh/Gli1 signaling is important in mediating EMT in rat PMCs, which provides a potential novel therapeutic approach for clinical investigation on renal failure treatment.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读