例如:"lncRNA", "apoptosis", "WRKY"

TRPV1 activation stimulates NKCC1 and increases hydrostatic pressure in the mouse lens.

Am J Physiol Cell Physiol. 2020 May 01;318(5):C969-C980. doi:10.1152/ajpcell.00391.2019. Epub 2020 Apr 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The porcine lens response to a hyperosmotic stimulus involves an increase in the activity of an ion cotransporter sodium-potassium/two-chloride cotransporter 1 (NKCC1). Recent studies with agonists and antagonists pointed to a mechanism that appears to depend on activation of transient receptor potential vanilloid 1 (TRPV1) ion channels. Here, we compare responses in lenses and cultured lens epithelium obtained from TRPV1-/- and wild type (WT) mice. Hydrostatic pressure (HP) in lens surface cells was determined using a manometer-coupled microelectrode approach. The TRPV1 agonist capsaicin (100 nM) caused a transient HP increase in WT lenses that peaked after ∼30 min and then returned toward baseline. Capsaicin did not cause a detectable change of HP in TRPV1-/- lenses. The NKCC inhibitor bumetanide prevented the HP response to capsaicin in WT lenses. Potassium transport was examined by measuring Rb+ uptake. Capsaicin increased Rb+ uptake in cultured WT lens epithelial cells but not in TRPV1-/- cells. Bumetanide, A889425, and the Akt inhibitor Akti prevented the Rb+ uptake response to capsaicin. The bumetanide-sensitive (NKCC-dependent) component of Rb+ uptake more than doubled in response to capsaicin. Capsaicin also elicited rapid (<2 min) NKCC1 phosphorylation in WT but not TRPV1-/- cells. HP recovery was shown to be absent in TRPV1-/- lenses exposed to hyperosmotic solution. Bumetanide and Akti prevented HP recovery in WT lenses exposed to hyperosmotic solution. Taken together, responses to capsaicin and hyperosmotic solution point to a functional role for TRPV1 channels in mouse lens. Lack of NKCC1 phosphorylation and Rb+ uptake responses in TRPV1-/- mouse epithelium reinforces the notion that a hyperosmotic challenge causes TRPV1-dependent NKCC1 activation. The results are consistent with a role for the TRPV1-activated signaling pathway leading to NKCC1 stimulation in lens osmotic homeostasis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读