例如:"lncRNA", "apoptosis", "WRKY"

Increased Myocardial Oxygen Consumption Precedes Contractile Dysfunction in Hypertrophic Cardiomyopathy Caused by Pathogenic TNNT2 Gene Variants.

J Am Heart Assoc. 2020 Apr 21;9(8):e015316. doi:10.1161/JAHA.119.015316. Epub 2020 Apr 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Background Hypertrophic cardiomyopathy is caused by pathogenic sarcomere gene variants. Individuals with a thin-filament variant present with milder hypertrophy than carriers of thick-filament variants, although prognosis is poorer. Herein, we defined if decreased energetic status of the heart is an early pathomechanism in TNNT2 (troponin T gene) variant carriers. Methods and Results Fourteen individuals with TNNT2 variants (genotype positive), without left ventricular hypertrophy (G+/LVH-; n=6) and with LVH (G+/LVH+; n=8) and 14 healthy controls were included. All participants underwent cardiac magnetic resonance and [11C]-acetate positron emission tomography imaging to assess LV myocardial oxygen consumption, contractile parameters and myocardial external efficiency. Cardiac efficiency was significantly reduced compared with controls in G+/LVH- and G+/LVH+. Lower myocardial external efficiency in G+/LVH- is explained by higher global and regional oxygen consumption compared with controls without changes in contractile parameters. Reduced myocardial external efficiency in G+/LVH+ is explained by the increase in LV mass and higher oxygen consumption. Septal oxygen consumption was significantly lower in G+/LVH+ compared with G+/LVH-. Although LV ejection fraction was higher in G+/LVH+, both systolic and diastolic strain parameters were lower compared with controls, which was most evident in the hypertrophied septal wall. Conclusions Using cardiac magnetic resonance and [11C]-acetate positron emission tomography imaging, we show that G+/LVH- have an initial increase in oxygen consumption preceding contractile dysfunction and cardiac hypertrophy, followed by a decline in oxygen consumption in G+/LVH+. This suggests that high oxygen consumption and reduced myocardial external efficiency characterize the early gene variant-mediated disease mechanisms that may be used for early diagnosis and development of preventive treatments.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读