例如:"lncRNA", "apoptosis", "WRKY"

CXXC4 mediates glucose-induced β-cell proliferation.

Acta Diabetol. 2020 Sep;57(9):1101-1109. Epub 2020 Apr 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIMS:CXXC finger protein 4 (CXXC4) is an identified negative regulator of the Wnt/β-catenin pathway, and it is involved in cancer cell proliferation. In this study, we sought to clarify whether CXXC4 is involved in glucose-stimulated β-cell proliferation. MATERIALS AND METHODS:We investigated the biological function of CXXC4 in glucose-induced β-cell proliferation, and we investigated the underlying mechanism of this activity. First, we analyzed CXXC4 expression in established rat models treated for 24 h with a high glucose infusion and in INS-1 cells and primary rat islets treated with different concentrations of glucose. Subsequently, we used an adenovirus to overexpress CXXC4 in INS-1 cells and primary islets. The proliferation rate of β-cells was evaluated by CCK-8 and EdU incorporation methods. Cell cycle analysis was performed by flow cytometry. Finally, the Wnt signaling pathway and its downstream genes were assessed by Western blot. RESULTS:CXXC4 mRNA levels were significantly lower in islets isolated from glucose-infused rats than they were in those isolated from saline-infused rats. Decreased expression of CXXC4 also correlated with high glucose treatment of INS-1 cells and primary rat β-cells. Furthermore, adenovirus-mediated overexpression of CXXC4 inhibited cell proliferation induced by the high glucose treatment in vitro, which was mechanistically mediated by Wnt signaling and a decrease in cyclin D2 expression. CONCLUSIONS:Glucose inhibits CXXC4 expression and hence promotes pancreatic β-cell proliferation. Our findings may provide a new potential target for the treatment of diabetes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读