例如:"lncRNA", "apoptosis", "WRKY"

Loss of heterozygosity for KrasG12D promotes REDD1-dependent, non-canonical glutamine metabolism in pancreatic ductal adenocarcinoma.

Biochem Biophys Res Commun. 2020 Jun 11;526(4):880-888. Epub 2020 Apr 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Pancreatic cancer is associated with high mortality, and pancreatic ductal adenocarcinoma (PDAC) is its most common subtype. The rapid growth of PDAC is dependent on the non-canonical pathway of glutamine (Gln) utilization, and loss of heterozygosity for KrasG12D (KrasG12D-LOH) frequently observed in PDAC is associated with an aggressive and invasive phenotype. However, it remains unclear whether KrasG12D-LOH contributes to non-canonical Gln metabolism in PDAC. Here, we showed that KrasG12D-LOH leads to a substantial increase in non-canonical Gln metabolism in PDAC cells. Importantly, we observed elevated expression of regulated in DNA damage and development 1 (REDD1), which is activated in response to hypoxia and nutrient deprivation, in KrasG12D-LOH PDAC, and that REDD1 knockdown efficiently repressed KrasG12D-LOH-regulated Gln metabolism and suppressed proliferation, migration, and invasion of KrasG12D-LOH PDAC cells. These data provide evidence that REDD1 is a downstream target of KrasG12D-LOH and is involved in promoting non-canonical Gln metabolism in PDAC.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读