例如:"lncRNA", "apoptosis", "WRKY"

TRIM16 protects from OGD/R-induced oxidative stress in cultured hippocampal neurons by enhancing Nrf2/ARE antioxidant signaling via downregulation of Keap1.

Exp Cell Res. 2020 Jun 01;391(1):111988. Epub 2020 Apr 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Tripartite motif 16 (TRIM16) has emerged as a novel oxidative stress-responsive protein that confers cytoprotective effects by reinforcing the cellular antioxidant system. However, whether TRIM16 is involved in regulating oxidative stress during cerebral ischemia/reperfusion injury remains unclear. In the present study, we aimed to explore the potential function and molecular mechanism of TRIM16 in regulating oxidative stress in neurons induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Here, we found that OGD/R exposure resulted in a significant induction of TRIM16 expression in neurons. Depletion of TRIM16 by siRNA-mediated gene knockdown markedly upregulated the sensitivity of neurons to OGD/R-induced apoptosis and reactive oxygen species generation. Notably, upregulation of TRIM16 expression significantly alleviated OGD/R-induced apoptosis and generation in neurons. Moreover, TRIM16 overexpression markedly increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression and enhanced Nrf2/antioxidant response element (ARE) activation associated with downregulation of kelch-like ECH-associated protein 1 (Keap1) expression. Restoration of Keap1 significantly reversed the TRIM16-mediated promotion effect on Nrf2/ARE activation. In addition, knockdown of Nrf2 also markedly abrogated the TRIM16-conferred neuroprotective effect in OGD/R-exposed neurons. Taken together, our results of our study demonstrate that induction of TRIM16 confers a cytoprotective effect in OGD/R-exposed neurons through enhancement of Nrf2/ARE antioxidant signaling via downregulation of Keap1. These findings suggest that TRIM16 may play a critical role in cerebral ischemia/reperfusion injury and serve as a promising target for neuroprotection.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读