例如:"lncRNA", "apoptosis", "WRKY"

The WD40 repeat protein, WDR36, orchestrates sphingosine kinase-1 recruitment and phospholipase C-β activation by Gq-coupled receptors.

Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Jul;1865(7):158704. Epub 2020 Mar 31
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Sphingosine kinases (SphK) catalyse the formation of sphingosine-1-phosphate (S1P) and play important roles in the cardiovascular, nervous and immune systems. We have shown before that Gq-coupled receptors induce a rapid and long-lasting translocation of SphK1 to the plasma membrane and cross-activation of S1P receptors. Here, we further addressed Gq regulation of SphK1 by analysing the influence of the WD40 repeat protein, WDR36. WDR36 has been described as a scaffold tethering Gαq to phospholipase C (PLC)-β and the thromboxane A2 receptor-β (TPβ receptor). Overexpression of WDR36 in HEK-293 cells enhanced TPβ receptor-induced inositol phosphate production, as reported (Cartier et al. 2011), but significantly attenuated inositol phosphate production induced by muscarinic M3 and bradykinin B2 receptors. In agreement with its effect on PLCβ, WDR36 augmented TPβ receptor-induced [Ca2+]i increases. Surprisingly, WDR36 also augmented M3 receptor-induced [Ca2+]i increases, which was due to increased Ca2+ mobilization while the Ca2+ content of thapsigargin-sensitive stores remained unaltered. Interestingly, overexpression of WDR36 significantly delayed SphK1 translocation by Gq-coupled M3, B2 and H1 receptors in HEK-293 cells, while TPβ receptor-induced SphK1 translocation was generally slow and not altered by WDR36 in these cells. Finally, in C2C12 myoblasts, overexpression of WDR36 delayed SphK1 translocation induced by B2 receptors. It is concluded that WDR36 reduces signalling of Gq-coupled receptors other than TPβ towards PLC and SphK1, most likely by scavenging Gαq and PLCβ. Our results support a role of WDR36 in orchestration of Gq signalling complexes, and might help to functionally unravel its genetic association with asthma and allergy.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读