例如:"lncRNA", "apoptosis", "WRKY"

LncRNA FOXD3-AS1 Mediates AKT Pathway to Promote Growth and Invasion in Hepatocellular Carcinoma Through Regulating RICTOR.

Cancer Biother Radiopharm. 2020 May;35(4):292-300. doi:10.1089/cbr.2019.3335. Epub 2020 Mar 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Hepatocellular carcinoma (HCC) has high morbidity and mortality, but current therapeutic methods cannot effectively improve patient's prognosis. FOXD3-AS1, a new identified long noncoding RNA, is dysregulated in several cancers and functions as a carcinogenic or tumor-suppressor factor. However, the function of FOXD3-AS1 in HCC has not been reported. Quantitative real time-polymerase chain reaction was applied to evaluate the expression of FOXD3-AS1 in HCC tissues and cell lines. miRDB and TargetScan websites were utilized to predict the interaction network of FOXD3-AS1 as a competing endogenous RNA. The interaction was confirmed by luciferase reporter assay and RNA binding protein immunoprecipitation (RIP) assay. The effect of FOXD3-AS1 on HCC cells (Huh6) were measured by cell counting kit (CCK)-8, BrdU cell proliferation assay, Transwell invasion assay, and wound healing assay. FOXD3-AS1 was overexpressed in HCC, and HCC patients with the high level of FOXD3-AS1 had a poor prognosis. In addition, FOXD3-AS1 knockdown considerably inhibited the proliferation, migration, and invasion of Huh6 cells. Besides, FOXD3-AS1 functioned as a sponge of miR-335, and RICTOR was a direct target gene of miR-335. Furthermore, FOXD3-AS1 could enhance the level of RICTOR through sponging miR-335. Moreover, the knockdown of FOXD3-AS1 could competitively bind with miR-335 to suppress RICTOR expression, thereby inhibiting the growth of Huh6 cells through the deactivation of AKT signaling pathway. FOXD3-AS1 is crucial for the tumorigenesis and progression of HCC. The interaction among FOXD3-AS1, miR-335, and RICTOR provides a novel insight for understanding the molecular mechanism of HCC, and FOXD3-AS1, miR-335, and RICTOR can be regarded as the potential targets for HCC treatment.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读