例如:"lncRNA", "apoptosis", "WRKY"

Lack of UCP1 stimulates fatty liver but mediates UCP1-independent action of beige fat to improve hyperlipidemia in Apoe knockout mice.

Biochim Biophys Acta Mol Basis Dis. 2020 Jul 01;1866(7):165762. Epub 2020 Mar 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Brown adipose tissue (BAT) plays a critical role in lipid metabolism and may protect from hyperlipidemia; however, its beneficial effect appears to depend on the ambient temperature of the environment. In this study, we investigated the effects of uncoupling protein 1 (UCP1) deficiency on lipid metabolism, including the pathophysiology of hyperlipidemia, in apolipoprotein E knockout (APOE-KO) mice at a normal (23 °C) and thermoneutral (30 °C) temperature. Unexpectedly, UCP1 deficiency caused improvements in hyperlipidemia, atherosclerosis, and glucose metabolism, regardless of an increase in hepatic lipid deposition, in Ucp1/Apoe double-knockout (DKO) mice fed a high-fat diet at 23 °C, with BAT hyperplasia and robust browning of inguinal white adipose tissue (IWAT) observed. Proteomics and gene expression analyses revealed significant increases in many proteins involved in energy metabolism and strong upregulation of brown/beige adipocyte-related genes and fatty acid metabolism-related genes in browned IWAT, suggesting an induction of beige fat formation and stimulation of lipid metabolism in DKO mice at 23 °C. Conversely, mRNA levels of fatty acid oxidation-related genes decreased in the liver of DKO mice. The favorable phenotypic changes were lost at 30 °C, with BAT whitening and disappearance of IWAT browning, while fatty liver further deteriorated in DKO mice compared with that in APOE-KO mice. Finally, longevity analysis revealed a significant lifespan extension of DKO mice compared with that of APOE-KO mice at 23 °C. Irrespective of the fundamental role of UCP1 thermogenesis, our results highlight the importance of beige fat for the improvement of hyperlipidemia and longevity under the atherogenic status at normal room temperature.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读