例如:"lncRNA", "apoptosis", "WRKY"

DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease.

Clin. Sci.2020 Apr 17;134(7):677-694
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Excessive mitochondrial fission has been identified as the central pathogenesis of diabetic kidney disease (DKD), but the precise mechanisms remain unclear. Disulfide-bond A oxidoreductase-like protein (DsbA-L) is highly expressed in mitochondria in tubular cells of the kidney, but its pathophysiological role in DKD is unknown. Our bioinformatics analysis showed that tubular DsbA-L mRNA levels were positively associated with eGFR but negatively associated with Scr and 24h-proteinuria in CKD patients. Furthermore, the genes that were coexpressed with DsbA-L were mainly enriched in mitochondria and were involved in oxidative phosphorylation. In vivo, knockout of DsbA-L exacerbated diabetic mice tubular cell mitochondrial fragmentation, oxidative stress and renal damage. In vitro, we found that DsbA-L was localized in the mitochondria of HK-2 cells. High glucose (HG, 30 mM) treatment decreased DsbA-L expression followed by increased mitochondrial generation and mitochondrial fragmentation. In addition, DsbA-L knockdown exacerbated these abnormalities, but this effect was reversed by overexpression of DsbA-L. Mechanistically, under HG conditions, knockdown DsbA-L expression accentuated JNK phosphorylation in HK-2 cells. Furthermore, administration of a JNK inhibitor (SP600125) or the scavenger MitoQ significantly attenuated JNK activation and subsequent mitochondrial fragmentation in DsbA-L-knockdown HK-2 cells. Additionally, the down-regulation of DsbA-L also amplified the gene and protein expression of mitochondrial fission factor (MFF) via the JNK pathway, enhancing its ability to recruit DRP1 to mitochondria. Taken together, these results link DsbA-L to alterations in mitochondrial dynamics during tubular injury in the pathogenesis of DKD and unveil a novel mechanism by which DsbA-L modifies mitochondrial fission.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读