例如:"lncRNA", "apoptosis", "WRKY"

PIWIL4 Maintains HIV-1 Latency by Enforcing Epigenetically Suppressive Modifications on the 5' Long Terminal Repeat.

J Virol. 2020 May 04;94(10)
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Although substantial progress has been made in depicting the molecular pathogenesis of human immunodeficiency virus type 1 (HIV-1) infection, the comprehensive mechanism of HIV-1 latency and the most promising therapeutic strategies to effectively reactivate the HIV-1 latent reservoir to achieve a functional cure for AIDS remain to be systematically illuminated. Here, we demonstrated that piwi (P element-induced Wimpy)-like RNA-mediated gene silencing 4 (PIWIL4) played an important role in suppressing HIV-1 transcription and contributed to the latency state in HIV-1-infected cells through its recruitment of various suppressive factors, including heterochromatin protein 1α/β/γ, SETDB1, and HDAC4. The knockdown of PIWIL4 enhanced HIV-1 transcription and reversed HIV-1 latency in both HIV-1 latently infected Jurkat T cells and primary CD4+ T lymphocytes and resting CD4+ T lymphocytes from HIV-1-infected individuals on suppressive combined antiretroviral therapy (cART). Furthermore, in the absence of PIWIL4, HIV-1 latently infected Jurkat T cells were more sensitive to reactivation with vorinostat (suberoylanilide hydroxamic acid, or SAHA), JQ1, or prostratin. These findings indicated that PIWIL4 promotes HIV-1 latency by imposing repressive marks at the HIV-1 5' long terminal repeat. Thus, the manipulation of PIWIL4 could be a novel strategy for developing promising latency-reversing agents (LRAs).IMPORTANCE HIV-1 latency is systematically modulated by host factors and viral proteins. During this process, the suppression of HIV-1 transcription plays an essential role in promoting HIV-1 latency. In this study, we found that PIWIL4 repressed HIV-1 promoter activity and maintained HIV-1 latency. In particular, we report that PIWIL4 can regulate gene expression through its association with the suppressive activity of HDAC4. Therefore, we have identified a new function for PIWIL4: it is not only a suppressor of endogenous retrotransposons but also plays an important role in inhibiting transcription and leading to latent infection of HIV-1, a well-known exogenous retrovirus. Our results also indicate a novel therapeutic target to reactivate the HIV-1 latent reservoir. Copyright © 2020 American Society for Microbiology.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读