[No authors listed]
Aging-related chronic inflammation is a risk factor for many human disorders through incompletely understood mechanisms. Aged mice deficient in microRNA (miRNA/miR)-146a succumb to life-shortening chronic inflammation. In this study, we report that miR-155 in T cells contributes to shortened lifespan of miR-146a-/- mice. Using single-cell RNA sequencing and flow cytometry, we found that miR-155 promotes the activation of effector T cell populations, including T follicular helper cells, and increases germinal center B cells and autoantibodies in mice aged over 15 months. Mechanistically, aerobic glycolysis genes are elevated in T cells during aging, and upon deletion of miR-146a, in a T cell miR-155-dependent manner. Finally, skewing T cell metabolism toward aerobic glycolysis by deleting mitochondrial pyruvate carrier recapitulates age-dependent T cell phenotypes observed in miR-146a-/- mice, revealing the sufficiency of metabolic reprogramming to influence immune cell functions during aging. Altogether, these data indicate that T cell-specific miRNAs play pivotal roles in regulating lifespan through their influences on inflammaging.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |