例如:"lncRNA", "apoptosis", "WRKY"

Garcinol pacifies acrylamide induced cognitive impairments, neuroinflammation and neuronal apoptosis by modulating GSK signaling and activation of pCREB by regulating cathepsin B in the brain of zebrafish larvae.

Food Chem. Toxicol.2020 Apr;138:111246. Epub 2020 Mar 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The presence of acrylamide (ACR) in food results in evident cognitive decline, accumulation of misfolded proteins, neurotoxicity, neuroinflammation, and neuronal apoptosis leading to progressive neurodegeneration. Here, we used 4 dpf zebrafish larvae exposed to ACR (1mM/3days) as our model, and neuronal proteins were analyzed. Next, we tested the effect of garcinol (GAR), a natural histone-acetylation inhibitor, whose neuroprotection mechanism of action remains to be fully elucidated. Our result revealed that ACR exposure significantly impaired cognitive behavior, downregulated oxidative repair machinery, and enhanced microglia-induced neuronal apoptosis. Moreover, ACR mediated cathepsin-B (CAT-B) translocation acted as the intracellular secretase for the processing of amyloid precursor protein (APP) and served as an additional risk factor for tau hyper-phosphorylation. Here, GAR suppresses ACR mediated CATB translocation as similar with standard inhibitor CA-074. And, this pharmacological repression helped in inhibiting amyloidogenic APP processing and downstream tau hyper-phosphorylation. GAR neuroprotection was accompanied by CREB, ATF1, and BDNF activation promoting neuronal survival. At the same time, GAR subdued cdk5 and GSK3β, the link between APP processing and tau hyper-phosphorylation. Taken together, our findings indicate that GAR rescued from ACR mediated behavioral defects, oxidative injury, neuroinflammation, undesirable APP processing, tau hyper-phosphorylation which in turn found to be CATB dependent.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读