[No authors listed]
Mapping of the holistic cell behaviours sculpting the four-chambered mammalian heart has been a goal or previous studies, but so far only success in transparent invertebrates and lower vertebrates with two-chambered hearts has been achieved. Using a live-imaging system comprising a customized vertical light-sheet microscope equipped with a mouse embryo culture module, a heartbeat-gated imaging strategy and a digital image processing framework, we realized volumetric imaging of developing mouse hearts at single-cell resolution and with uninterrupted cell lineages for up to 1.5âd. Four-dimensional landscapes of Nppa+ cardiomyocyte cell behaviours revealed a blueprint for ventricle chamber formation by which biased outward migration of the outermost cardiomyocytes is coupled with cell intercalation and horizontal division. The inner-muscle architecture of trabeculae was developed through dual mechanisms: early fate segregation and transmural cell arrangement involving both oriented cell division and directional migration. Thus, live-imaging reconstruction of uninterrupted cell lineages affords a transformative means for deciphering mammalian organogenesis.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |