例如:"lncRNA", "apoptosis", "WRKY"

Nuclear actin regulates cell proliferation and migration via inhibition of SRF and TEAD.

Biochim Biophys Acta Mol Cell Res. 2020 Jul;1867(7):118691. Epub 2020 Feb 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Actin dynamics regulate cell behaviour in response to physiological signals. Here we demonstrate a novel role for nuclear actin in inhibiting cell proliferation and migration. We demonstrate that physiological signals that elevate cAMP, which is anti-mitogenic in vascular smooth muscle cells, increases nuclear actin monomer levels. Expression of a nuclear-targeted polymerisation-defective actin mutant (NLS-ActinR62D) inhibited proliferation and migration. Preventing nuclear actin monomer accumulation by enhancing its nuclear export or polymerisation reversed the anti-mitogenic and anti-migratory effects of cAMP. Transcriptomic analysis identified repression of proliferation and migration associated genes regulated by serum response factor (SRF) and TEA Domain (TEAD) transcription factors. Accordingly, NLS-ActinR62D inhibited SRF and TEAD activity and target gene expression, and these effects were reversed by constitutively-active mutants of the TEAD and SRF co-factors YAP, TAZ and MKL1. In summary, intranuclear actin inhibits proliferation and migration by inhibiting YAP-TEAD and MKL-SRF activity. This mechanism explains the anti-mitogenic and anti-migratory properties of physiological signals that elevate cAMP. SUMMARY: McNeill et al show that increased levels of intranuclear actin monomer inhibit cell proliferation and migration by inhibiting MKL1-SRF and YAP/TAZ-TEAD-dependent gene expression. This mechanism mediates the anti-mitogenic and anti-migratory effects of physiological signals that elevate cyclic-AMP. Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读