例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA-429 inhibits the proliferation and migration of esophageal squamous cell carcinoma cells by targeting RAB23 through the NF-κB pathway.

Eur Rev Med Pharmacol Sci. 2020 Feb;24(3):1202-1210. doi:10.26355/eurrev_202002_20172
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:Esophageal squamous cell carcinoma (ESCC) is the main type of esophageal cancer and is a devastating malignancy. Recent research shows that microRNA-429 (miR-429) has a role in suppressing cell proliferation, cell cycle and promoting apoptosis in many cancers. This study aims to explore the great role of miR-429 in esophageal squamous cell carcinoma. MATERIAL AND METHODS:The mRNA and protein levels of miR-429 and genes were calculated by using Real Time-quantitative (RT-qPCR) and Western blot. We applied Cell Counting Kit-8 (CCK-8) and transwell assays to measure the proliferative and migratory abilities. Meanwhile, the Kaplan-Meier method was used to calculate the overall survival of esophageal squamous cell carcinoma patients. RESULTS:MiR-429 was downregulated while RAB23 was upregulated in ESCC tissues and cell lines, and downregulation of miR-429 predicted poor prognosis in ESCC. RAB23 was found to be a direct target gene of miR-429 and its expression was regulated by miR-429 in ESCC. Moreover, miR-429 inhibited the proliferation through nuclear factor-kappa B (NF-κB) pathway and inhibited cell migration-mediated epithelial-mesenchymal transition (EMT) in TE-2 cells. In addition, overexpression of miR-429 suppressed tumor growth of ESCC in vivo. CONCLUSIONS:MiR-429 inhibited the proliferation through the RAB23/NF-κB pathway and the migration-mediated EMT in ESCC. The newly identified miR-429/RAB23 axis provides novel insight into the pathogenesis of ESCC.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读