例如:"lncRNA", "apoptosis", "WRKY"

S-glutathionylation of human glyceraldehyde-3-phosphate dehydrogenase and possible role of Cys152-Cys156 disulfide bridge in the active site of the protein.

Biochim Biophys Acta Gen Subj. 2020 Jun;1864(6):129560. Epub 2020 Feb 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:We previously showed that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is S-glutathionylated in the presence of H2O2 and GSH. S-glutathionylation was shown to result in the formation of a disulfide bridge in the active site of the protein. In the present work, the possible biological significance of the disulfide bridge was investigated. METHODS:Human recombinant GAPDH with the mutation C156S (hGAPDH_C156S) was obtained to prevent the formation of the disulfide bridge. Properties of S-glutathionylated hGAPDH_C156S were studied in comparison with those of the wild-type protein hGAPDH. RESULTS:S-glutathionylation of hGAPDH and hGAPDH_C156S results in the reversible inactivation of the proteins. In both cases, the modification results in corresponding mixed disulfides between the catalytic Cys152 and GSH. In the case of hGAPDH, the mixed disulfide breaks down yielding Cys152-Cys156 disulfide bridge in the active site. In hGAPDH_C156S, the mixed disulfide is stable. Differential scanning calorimetry method showed that S-glutathionylation leads to destabilization of hGAPDH molecule, but does not affect significantly hGAPDH_C156S. Reactivation of S-glutathionylated hGAPDH in the presence of GSH and glutaredoxin 1 is approximately two-fold more efficient compared to that of hGAPDH_C156S. CONCLUSIONS:S-glutathionylation induces the formation of Cys152-Cys156 disulfide bond in the active site of hGAPDH, which results in structural changes of the protein molecule. Cys156 is important for reactivation of S-glutathionylated GAPDH by glutaredoxin 1. GENERAL SIGNIFICANCE:The described mechanism may be important for interaction between GAPDH and other proteins and ligands, involved in cell signaling.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读