例如:"lncRNA", "apoptosis", "WRKY"

microRNA-1203 targets and silences cyclophilin D to protect human endometrial cells from oxygen and glucose deprivation-re-oxygenation.

Aging (Albany NY). 2020 Feb 10;12(3):3010-3024. Epub 2020 Feb 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Oxygen and glucose deprivation (OGD)-re-oxygenation (OGDR) stimulation to the human endometrial cells mimics ischemia-reperfusion injury. Cyclophilin D (CypD)-dependent programmed necrosis pathway mediates OGDR-induced cytotoxicity to human endometrial cells. We here identified a novel CypD-targeting miRNA, microRNA-1203 (miR-1203). In T-HESC and primary human endometrial cells, ectopic overexpression of miR-1203, using a lentiviral construct, potently downregulated the CypD 3'-untranslated region (3'-UTR) activity and its expression. Both were however upregulated in endometrial cells with forced miR-1203 inhibition by its anti-sense sequence. Functional studies demonstrated that ectopic miR-1203 overexpression in endometrial cells alleviated OGDR-induced programmed necrosis, inhibiting mitochondrial CypD-p53-adenine nucleotide translocator 1 association, mitochondrial depolarization, reactive oxygen species production, and medium lactate dehydrogenase release. Contrarily OGDR-induced programmed necrosis and cytotoxicity were intensified with forced miR-1203 inhibition in endometrial cells. Significantly, ectopic miR-1203 overexpression or inhibition failed to change OGDR-induced cytotoxicity in CypD-knockout T-HESC cells. Furthermore, ectopic miR-1203 overexpression was unable to protect T-HESC endometrial cells from OGDR when CypD was restored by an UTR-depleted CypD construct. Collectively, these results show that miR-1203 targets and silences CypD to protect human endometrial cells from OGDR.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读