例如:"lncRNA", "apoptosis", "WRKY"

Methylation‑driven genes PMPCAP1, SOWAHC and ZNF454 as potential prognostic biomarkers in lung squamous cell carcinoma.

Mol Med Rep. 2020 Mar;21(3):1285-1295. doi:10.3892/mmr.2020.10933. Epub 2020 Jan 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Of the different types of lung cancer, lung squamous cell cancer (LUSC) has the second highest rates of morbidity and mortality, which have been increasing in recent years. Epigenetic abnormalities may serve as potential biomarkers and diagnostic and/or therapeutic targets, which may help to monitor and improve the prognosis of patients with cancer. In the present study, data were obtained from The Cancer Genome Atlas database and survival and joint survival analyses were conducted using the R MethylMix package. Peptidase, mitochondrial processing a subunit pseudogene 1 (PMPCAP1), sosondowah ankyrin repeat domain family member C (SOWAHC) and zinc finger protein (ZNF) 454 were identified as independent prognosis‑related hub methylation‑driven genes (MDGs). Of these three genes, PMPCAP1 and SOWAHC, characterized by hypomethylation and high expression levels, were associated with poor prognosis in patients with LUSC, whilst ZNF454 was associated with an improved prognosis. In addition, pathway enrichment analysis suggested that PMPCAP1, SOWAHC and ZNF454 were primarily involved in gene expression or transcription pathways. Furthermore, 5, 1 and 10 key methylation sites of PMPCAP1, SOWAHC and ZNF454, respectively, were confirmed to be significantly relevant to gene expression, establishing a basis for further investigation into the mechanisms and more precise targets of these 3 genes. In conclusion, the MDGs PMPCAP1, SOWAHC and ZNF454 may be potential prognostic biomarkers of LUSC for guiding diagnosis and therapy options, as well as providing a theoretical basis for further investigation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读