例如:"lncRNA", "apoptosis", "WRKY"

A previously identified apoptosis inhibitor iASPP confers resistance to chemotherapeutic drugs by suppressing senescence in cancer cells.

J Biol Chem. 2020 Mar 20;295(12):4049-4063. Epub 2020 Jan 31
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Cellular senescence is terminal cell cycle arrest that represents a prominent response to numerous anticancer therapies. The oncogene inhibitor of the apoptosis-stimulating protein of p53 (iASPP) plays essential roles in regulating cellular drug response by inhibiting apoptosis. However, whether or not it regulates chemotherapy-induced senescence (TIS) in cancer cells remains unclear. Here, using two commonly used cancer cell lines, HCT 116 and MCF-7, along with the xenograft mouse model, we found that iASPP inhibits senescence and also influences the senescence-associated secretory phenotype (SASP), which confers anticancer drug resistance independently of apoptosis. Mechanistically, iASPP is transcriptionally elevated by the p65 subunit of NF-κB in senescent cells and then translocates to the nucleus, where it binds p53 and NF-κBp65. This binding inhibits their transcriptional activities toward p21 and the key SASP factors interleukin (IL)-6/IL-8, respectively, and subsequently prevents senescence. Of note, we observed that iASPP knockdown sensitizes apoptosis-resistant cancers to doxorubicin treatment by promoting senescence both in vitro and in vivo We conclude that iASPP integrates the NF-κBp65- and p53-signaling pathways and thereby regulates cell fate in response to TIS, leading to chemotherapy resistance. These findings suggest that iASPP inhibition might be a strategy that could help restore senescence in cancer cells and improve outcomes of chemotherapy-based therapies.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读