例如:"lncRNA", "apoptosis", "WRKY"

Role of adenosine deaminase 2 gene variants in pediatric deficiency of adenosine deaminase 2: A structural biological approach.

Mol Med Rep. 2020 Feb;21(2):876-882. doi:10.3892/mmr.2019.10862. Epub 2019 Dec 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Adenosine deaminase 2 (ADA2) belongs to the novel family of adenosine deaminase growth factors (ADGFs), which play an important role in tissue development. The deficiency of adenosine deaminase 2 (DADA2) is a recently recognized autosomal recessive autoinflammatory disease, characterized by various systemic vascular and inflammatory manifestations, which is associated with ADA2 mutations. Considering that a recent screening of an international registry of children with systemic primary vasculitis revealed novel and already known variants in ADA2, this study aimed to further investigate the functional significance of the rare variants detected, namely p.Gly47Arg, p.Gly47Ala, p.Arg8Trp, p.Leu351Gln and p.Ala357Thr, by using a structural biological approach. Three‑dimensional models of the mutants were developed and their three‑dimensional (3D) structures were subjected to detailed interaction and conformational analyses. This led to suggestions that the novel mutations found may affect the formation/stability of the homodimer or may influence the activity of the enzyme. It was thus concluded that the Arg8Trp and Gly47Arg mutations affect the position and interaction of the dimer‑associated HN1 helical structure and therefore, dimer formation and stabilization, while Leu351Gln and Ala357Thr influence the metal coordination in the active site. These findings shed further light onto the structural consequences of the mutations under investigation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读