例如:"lncRNA", "apoptosis", "WRKY"

Oncomir MicroRNA-346 Is Upregulated in Colons of Patients With Primary Sclerosing Cholangitis.

Clin Transl Gastroenterol. 2020 Jan;11(1):e00112
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


INTRODUCTION:Primary sclerosing cholangitis (PSC) is a cholestatic liver disorder that is frequently associated with ulcerative colitis (UC). Patients with PSC and UC (PSC-UC) have a higher risk of colorectal neoplasia compared with patients with UC. The oncogenic properties of microRNA-346 (miR-346) have been recently reported. We investigated the expression of miR-346 and its 2 target genes, the receptor of vitamin D (VDR), and the tumor necrosis factor-α (TNF-α), which are known to modulate carcinogenesis. METHODS:Ascending and sigmoid colon biopsies were obtained from patients with PSC, PSC and UC (PSC-UC), UC, and healthy controls (n = 10 in each group). Expressions of VDR, TNF-α, 18S RNA, p27, miR-346, and reference microRNA, miR-191, were evaluated by real-time PCR using human TaqMan Gene Expression and TaqMan MicroRNA Assays. Functional studies with miR-346 mimic and inhibitor were conducted in HepG2 and Caco-2 cells. The effect of ursodeoxycholic acid on miR-346 expression was examined in Caco-2 cells. RESULTS:An increased expression of miR-346 in the ascending colon of PSC-UC was observed (P < 0.001 vs all groups). In patients with UC, an exceptionally low colonic expression of miRNA-346 was accompanied by the extensive upregulation of VDR and TNF-α genes. A functional in vitro analysis demonstrated that inhibition of miR-346 resulted in the upregulation of VDR and TNF-α, whereas the induction of miR-346 activity suppressed VDR, TNF-α, and p27. DISCUSSION:The upregulation of miRNA-346 in the colon of patients with PSC may be responsible for the disturbance of VDR and TNF-α signaling pathway, which could result in an inadequate suppression of neoplasia.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读