例如:"lncRNA", "apoptosis", "WRKY"

Long non-coding RNA FTX alleviates hypoxia/reoxygenation-induced cardiomyocyte injury via miR-410-3p/Fmr1 axis.

Eur Rev Med Pharmacol Sci. 2020 Jan;24(1):396-408. doi:10.26355/eurrev_202001_19938
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:Long non-coding RNAs (lncRNAs) are involved in the development of myocardial ischemia/reperfusion (I/R) injury. In this study, we aimed to investigate the roles and underlying mechanisms of five prime to Xist (FTX) in myocardial I/R injury using cardiomyocyte hypoxia/reoxygenation (H/R) model. MATERIALS AND METHODS:Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to determine the expression of FTX, microRNA-410-3p (miR-410-3p) and fragile X mental retardation 1 (Fmr1) mRNA. Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis were employed to evaluate cell proliferation and apoptosis, respectively. Western blot assay was conducted to examine the protein levels of apoptosis-associated factors and Fmr1. Specific kits were used to detect the levels of oxidative stress-associated factors. Dual-luciferase reporter assay was performed to verify the association between miR-410-3p and FTX or Fmr1. RESULTS:FTX was reduced in myocardial I/R injury patients' serum and H/R-stimulated H9c2 cells. FTX overexpression relieved cell damage caused by H/R treatment through inducing cell proliferation and repressing cell apoptosis and oxidative stress in H9c2 cells. FTX was a sponge for miR-410-3p and the impact of FTX overexpression on H/R-induced cell injury was abolished by miR-410-3p elevation in H9c2 cells. Fmr1 was identified as a target of miR-410-3p and Fmr1 knockdown reversed the effect on H/R-induced cell damage mediated by miR-410-3p inhibition in H9c2 cells. Moreover, FTX positively regulated Fmr1 expression through sponging miR-410-3p in H9c2 cells. CONCLUSIONS:FTX regulated H/R-induced cardiomyocyte damage by upregulating Fmr1 via sponging miR-410-3p.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读